전체상품목록 바로가기

본문 바로가기



현재 위치

  1. Engineering
이전상품 다음 제품 보기 확대보기
추천메일 보내기 상품조르기 대량구매문의
추천 New

[] CMOS: Circuit Design, Layout, and Simulation, 4th Edition (해외배송 가능상품)

기본 정보
상품명 CMOS: Circuit Design, Layout, and Simulation, 4th Edition
저자명 R. Jacob Baker
소비자가 185,000원
판매가 203,500원
isbn 9781119481515
국내·해외배송 국내배송
배송방법 택배
배송비 무료
수량 수량증가수량감소
SNS 상품홍보
SNS 상품홍보

개인결제창을 통한 결제 시 네이버 마일리지 적립 및 사용이 가능합니다.

상품 옵션

(최소주문수량 1개 이상 / 최대주문수량 0개 이하)

수량을 선택해주세요.

위 옵션선택 박스를 선택하시면 아래에 상품이 추가됩니다.

상품 목록
상품명 상품수 가격
CMOS: Circuit Design, Layout, and Simulation, 4th Edition 수량증가 수량감소 203500 (  )
총 상품금액(수량) : 0 (0개)
바로구매하기 장바구니 담기 SOLD OUT 관심상품등록

상품상세정보

CMOS: Circuit Design, Layout, and Simulation, 4th Edition

R. Jacob Baker

ISBN: 978-1-119-48151-5 June 2019 Wiley-IEEE Press 1280 Pages $149.95 

Description

A revised guide to the theory and implementation of CMOS analog and digital IC design

The fourth edition of CMOS: Circuit Design, Layout, and Simulation is an updated guide to the practical design of both analog and digital integrated circuits. The author—a noted expert on the topic—offers a contemporary review of a wide range of analog/digital circuit blocks including: phase-locked-loops, delta-sigma sensing circuits, voltage/current references, op-amps, the design of data converters, and switching power supplies.

CMOS includes discussions that detail the trade-offs and considerations when designing at the transistor-level. The companion website contains numerous examples for many computer-aided design (CAD) tools. Using the website enables readers to recreate, modify, or simulate the design examples presented throughout the book. In addition, the author includes hundreds of end-of-chapter problems to enhance understanding of the content presented. This newly revised edition:

•    Provides in-depth coverage of both analog and digital transistor-level design techniques

•    Discusses the design of phase- and delay-locked loops, mixed-signal circuits, data converters, and circuit noise

•    Explores real-world process parameters, design rules, and layout examples

•    Contains a new chapter on Power Electronics

Written for students in electrical and computer engineering and professionals in the field, the fourth edition of CMOS: Circuit Design, Layout, and Simulation is a practical guide to understanding analog and digital transistor-level design theory and techniques.


Preface xxxiii

Chapter 1 Introduction to CMOS Design 1

1.1 The CMOS IC Design Process 1

1.1.1 Fabrication 2

1.2 CMOS Background 5

1.3 An Introduction to SPICE 8

Chapter 2 The Well 31

2.1 Patterning 32

2.1.1 Patterning the N-well 35

2.2 Laying Out the N-well 35

2.2.1 Design Rules for the N-well 36

2.3 Resistance Calculation 36

2.3.1 The N-well Resistor 38

2.4 The N-well/Substrate Diode 39

2.4.1 A Brief Introduction to PN Junction Physics 39

2.4.2 Depletion Layer Capacitance 42

2.4.3 Storage or Diffusion Capacitance 45

2.4.4 SPICE Modeling 46

2.5 The RC Delay through the N-well 48

2.6 Twin Well Processes 51

Chapter 3 The Metal Layers 59

3.1 The Bonding Pad 59

3.1.1 Laying Out the Pad I 60

3.2 Design and Layout Using the Metal Layers 63

3.2.1 Metal1 and Via1 63

3.2.2 Parasitics Associated with the Metal Layers 63

3.2.3 Current-Carrying Limitations 67

3.2.4 Design Rules for the Metal Layers 68

3.2.5 Contact Resistance 69

3.3 Crosstalk and Ground Bounce 70

3.3.1 Crosstalk 71

3.3.2 Ground Bounce 72

3.4 Layout Examples 74

3.4.1 Laying Out the Pad II 74

3.4.2 Laying Out Metal Test Structures 76

Chapter 4 The Active and Poly Layers 83

4.1 Layout Using the Active and Poly Layers 83

4.1.1 Process Flow 90

4.2 Connecting Wires to Poly and Active 93

4.3 Electrostatic Discharge (ESD) Protection 99

Chapter 5 Resistors, Capacitors, MOSFETs 107

5.1 Resistors 107

5.2 Capacitors 115

5.3 MOSFETs 118

5.4 Layout Examples 125

Chapter 6 MOSFET Operation 135

6.1 MOSFET Capacitance Overview/Review 136

6.2 The Threshold Voltage 139

6.3 IV Characteristics of MOSFETs 144

6.3.1 MOSFET Operation in the Triode Region 144

6.3.2 The Saturation Region 146

6.4 SPICE Modeling of the MOSFET 149

6.4.1 Some SPICE Simulation Examples 151

6.4.2 The Subthreshold Current 152

6.5 Short-Channel MOSFETs 154

6.5.1 MOSFET Scaling 155

6.5.2 Short-Channel Effects 156

6.5.3 SPICE Models for Our Short-Channel CMOS Process 157

Chapter 7 CMOS Fabrication by Jeff Jessing 165

7.1 CMOS Unit Processes 165

7.1.1 Wafer Manufacture 165

7.1.2 Thermal Oxidation 167

7.1.3 Doping Processes 168

7.1.4 Photolithography 170

7.1.5 Thin Film Removal 173

7.1.6 Thin Film Deposition 177

7.2 CMOS Process Integration 180

7.2.1 Frontend-of-the-Line Integration 182

7.2.2 Backend-of-the-Line Integration 196

7.3 Backend Processes 210

7.4 Advanced CMOS Process Integration 212

7.4.1 FinFETs 213

7.4.2 Dual Damascene Low-k/Cu Interconnects 216

7.5 Summary 219

Chapter 8 Electrical Noise: An Overview 221

8.1 Signals 221

8.1.1 Power and Energy 221

8.1.2 Power Spectral Density 223

8.2 Circuit Noise 226

8.2.1 Calculating and Modeling Circuit Noise 227

8.2.2 Thermal Noise 231

8.2.3 Signal-to-Noise Ratio 237

8.2.4 Shot Noise 247

8.2.5 Flicker Noise 251

8.2.6 Other Noise Sources 258

8.3 Discussion 260

8.3.1 Correlation 260

8.3.2 Noise and Feedback 264

8.3.3 Some Final Notes Concerning Notation 267

Chapter 9 Models for Analog Design 277

9.1 Long-Channel MOSFETs 277

9.1.1 The Square-Law Equations 279

9.1.2 Small Signal Models 286

9.1.3 Temperature Effects 300

9.2 Short-Channel MOSFETs 302

9.2.1 General Design (A Starting Point) 303

9.2.2 Specific Design (A Discussion) 306

9.3 MOSFET Noise Modeling 308

Chapter 10 Models for Digital Design 327

10.1 The Digital MOSFET Model 328

10.1.2 Process Characteristic Time Constant 331

10.1.3 Delay and Transition Times 333

10.1.4 General Digital Design 326

10.2 The MOSFET Pass Gate 326

10.2.1 Delay through a Pass Gate 338

10.2.2 Delay through Series-Connected PGs 340

10.3 A Final Comment Concerning Measurements 341

Chapter 11 The Inverter 347

11.1 DC Characteristics 347

11.2 Switching Characteristics 352

11.3 Layout of the Inverter 356

11.4 Sizing for Large Capacitive Loads 358

11.5 Other Inverter Configurations 364

Chapter 12 Static Logic Gates 369

12.1 DC Characteristics of the NAND and NOR Gates 369

12.1.1 DC Characteristics of the NAND Gate 369

12.1.2 DC Characteristics of the NOR Gate 372

12.2 Layout of the NAND and NOR Gates 373

12.3 Switching Characteristics 374

12.3.1 NAND Gate 375

12.3.2 Number of Inputs 378

12.4 Complex CMOS Logic Gates 379

Chapter 13 Clocked Circuits 389

13.1 The CMOS TG 389

13.2 Applications of the Transmission Gate 391

13.3 Latches and Flip-Flops 395

13.4 Examples 402

Chapter 14 Dynamic Logic Gates 411

14.1 Fundamentals of Dynamic Logic 411

14.1.1 Charge Leakage 411

14.1.2 Simulating Dynamic Circuits 414

14.1.3 Nonoverlapping Clock Generation 415

14.1.4 CMOS TG in Dynamic Circuits 416

14.2 Clocked CMOS Logic 417

Chapter 15 CMOS Layout Examples 425

15.1 Chip Layout 426

15.2 Layout Steps by Dean Moriarty 434

Chapter 16 Memory Circuits 445

16.1 Array Architectures 446

16.1.1 Sensing Basics 446

16.1.2 The Folded Array 452

16.1.3 Chip Organization 458

16.2 Peripheral Circuits 458

16.2.1 Sense Amplifier Design 458

16.2.2 Row/Column Decoders 467

16.2.3 Row Drivers 470

16.3 Memory Cells 471

16.3.1 The SRAM Cell 473

16.3.2 Read-Only Memory (ROM) 473

16.3.3 Floating Gate Memory 473

Chapter 17 Sensing Using Modulation 493

17.1 Qualitative Discussion 494

17.1.1 Examples of DSM 494

17.1.2 Using DSM for Sensing in Flash Memory 496

17.2 Sensing Resistive Memory 506

17.3 Sensing in CMOS Imagers 513

Chapter 18 Special Purpose CMOS Circuits 533

18.1 The Schmitt Trigger 533

18.1.1 Design of the Schmitt Trigger 534

18.1.2 Applications of the Schmitt Trigger 536

18.2 Multivibrator Circuits 538

18.2.1 The Monostable Multivibrator 539

18.2.2 The Astable Multivibrator 540

18.3 Input Buffers 541

18.3.1 Basic Circuits 541

18.3.2 Differential Circuits 543

18.3.3 DC Reference 547

18.3.4 Reducing Buffer Input Resistance 550

18.4 Charge Pumps (Voltage Generators) 551

18.4.1 Increasing the Output Voltage 553

18.4.2 Generating Higher Voltages: The Dickson Charge Pump 553

18.4.3 Example 556

Chapter 19 Digital Phase-Locked Loops 561

19.1 The Phase Detector 563

19.1.1 The XOR Phase Detector 563

19.1.2 The Phase Frequency Detector 567

19.2 The Voltage-Controlled Oscillator 570

19.2.1 The Current-Starved VCO 570

19.2.2 Source-Coupled VCOs 574

19.3 The Loop Filter 576

19.3.1 XOR DPLL 577

19.3.2 PFD DPLL 583

19.4 System Concerns 590

19.4.1 Clock Recovery from NRZ Data 593

19.5 Delay-Locked Loops 600

19.6 Some Examples 603

19.6.1 A 2 GHz DLL 603

19.6.2 A 1 Gbit/s Clock-Recovery Circuit 609

Chapter 20 Current Mirrors 621

20.1 The Basic Current Mirror 621

20.1.1 Long-Channel Design 622

20.1.2 Matching Currents in the Mirror 624

20.1.3 Biasing the Current Mirror 628

20.1.4 Short-Channel Design 634

20.1.5 Temperature Behavior 638

20.1.6 Biasing in the Subthreshold Region 642

20.2 Cascoding the Current Mirror 643

20.2.1 The Simple Cascode 643

20.2.2 Low-Voltage (Wide-Swing) Cascode 645

20.2.3 Wide-Swing, Short-Channel Design 648

20.2.4 Regulated Drain Current Mirror 651

20.3 Biasing Circuits 653

20.3.1 Long-Channel Biasing Circuits 653

20.3.2 Short-Channel Biasing Circuits 656

20.3.3 A Final Comment 657

Chapter 21 Amplifiers 671

21.1 Gate-Drain Connected Loads 671

21.1.1 Common-Source (CS) Amplifiers 671

21.1.2 The Source Follower (Common-Drain Amplifier) 683

21.1.3 Common Gate Amplifier 684

21.2 Current Source Loads 685

21.2.1 Common-Source Amplifier 685

21.2.2 The Cascode Amplifier 698

21.2.3 The Common-Gate Amplifier 702

21.2.4 The Source Follower (Common-Drain Amplifier) 702

21.3 The Push-Pull Amplifier 710

21.3.1 DC Operation and Biasing 711

21.3.2 Small-Signal Analysis 714

21.3.3 Distortion 716

Chapter 22 Differential Amplifiers 735

22.1 The Source-Coupled Pair 735

22.1.1 DC Operation 735

22.1.2 AC Operation 741

22.1.3 Common-Mode Rejection Ratio 745

22.1.4 Matching Considerations 746

22.1.5 Noise Performance 749

22.1.6 Slew-Rate Limitations 750

22.2 The Source Cross-Coupled Pair 750

22.2.1 Current Source Load 754

22.3 Cascode Loads (The Telescopic Diff-Amp) 756

22.4 Wide-Swing Differential Amplifiers 758

22.4.1 Current Differential Amplifier 760

22.4.2 Constant Transconductance Diff-Amp 760

Chapter 23 Voltage References 773

23.1 MOSFET-Resistor Voltage References 774

23.1.1 The Resistor-MOSFET Divider 774

23.1.2 The MOSFET-Only Voltage Divider 777

23.1.3 Self-Biased Voltage References 778

23.2 Parasitic Diode-Based References 784

23.2.1 Long-Channel BGR Design 787

23.2.2 Short-Channel BGR Design 795

Chapter 24 Operational Amplifiers I 803

24.1 The Two-Stage Op-Amp 804

24.2 An Op-Amp with Output Buffer 822

24.3 The Operational Transconductance Amplifier (OTA) 824

24.4 Gain-Enhancement 835

24.5 Some Examples and Discussions 839

Chapter 25 Dynamic Analog Circuits 857

25.1 The MOSFET Switch 857

25.1.1 Sample-and-Hold Circuits 861

25.2 Fully-Differential Circuits 864

25.2.1 A Fully-Differential Sample-and-Hold 866

25.3 Switched-Capacitor Circuits 869

25.3.1 Switched-Capacitor Integrator 871

25.4 Circuits 879

Chapter 26 Operational Amplifiers II 889

26.1 Biasing for Power and Speed 889

26.1.1 Device Characteristics 890

26.1.2 Biasing Circuit 891

26.2 Basic Concepts 892

26.3 Basic Op-Amp Design 900

26.4 Op-Amp Design Using Switched-Capacitor CMFB 920

Chapter 27 Nonlinear Analog Circuits 933

27.1 Basic CMOS Comparator Design 933

27.1.1 Characterizing the Comparator 939

27.1.2 Clocked Comparators 942

27.1.3 Input Buffers Revisited 943

27.2 Adaptive Biasing 943

27.3 Analog Multipliers 946

27.3.1 The Multiplying Quad 947

Chapter 28 Data Converter Fundamentals by Harry Li 955

28.1 Analog Versus Discrete Time Signals 955

28.2 Converting Analog Signals to Digital Signals 956

28.3 Sample-and-Hold (S/H) Characteristics 959

28.4 Digital-to-Analog Converter (DAC) Specifications 961

28.5 Analog-to-Digital Converter (ADC) Specifications 970

28.6 Mixed-Signal Layout Issues 979

Chapter 29 Data Converter Architectures by Harry Li 987

29.1 DAC Architectures 987

29.1.1 Digital Input Code 987

29.1.2 Resistor String 987

29.1.3 R-2R Ladder Networks 992

29.1.4 Current Steering 995

29.1.5 Charge-Scaling DACs 999

29.1.6 Cyclic DAC 1003

29.1.7 Pipeline DAC 1005

29.2 ADC Architectures 1006

29.2.1 Flash 1006

29.2.2 The Two-Step Flash ADC 1010

29.2.3 The Pipeline ADC 1014

29.2.4 Integrating ADCs 1018

29.2.5 The Successive Approximation ADC 1022

29.2.6 The Oversampling ADC 1027

Chapter 30 Implementing Data Converters 1043

30.1 R-2R Topologies for DACs 1043

30.1.1 The Current-Mode R-2R DAC 1044

30.1.2 The Voltage-Mode R-2R DAC 1045

30.1.3 A Wide-Swing Current-Mode R-2R DAC 1047

30.1.4 Topologies Without an Op-Amp 1057

30.2 Op-Amps in Data Converters 1063

30.2.1 Op-Amp Gain 1066

30.2.2 Op-Amp Unity Gain Frequency 1067

30.2.3 Op-Amp Offset 1067

30.3 Implementing ADCs 1070

30.3.1 Implementing the S/H 1071

30.3.2 The Cyclic ADC 1077

30.3.3 The Pipeline ADC 1084

Chapter 31 Feedback Amplifiers with Harry Li 1115

31.1 The Feedback Equation 1115

31.2 Properties of Negative Feedback on Amplifier Design 1117

31.2.1 Gain Desensitivity 1117

31.3 Recognizing Feedback Topologies 1120

31.3.1 Input Mixing 1121

31.3.2 Output Sampling 1121

31.3.3 The Feedback Network 1122

31.3.4 Calculating Open-Loop Parameters 1125

31.3.5 Calculating Closed-Loop Parameters 1127

31.4 The Voltage Amp (Series-Shunt Feedback) 1128

31.5 The Transimpedance Amp (Shunt-Shunt Feedback) 1134

31.5.1 Simple Feedback Using a Gate-Drain Resistor 1140

31.6 The Transconductance Amp (Series-Series Feedback) 1142

31.7 The Current Amplifier (Shunt-Series Feedback) 1146

31.8 Stability 1148

31.8.1 The Return Ratio 1151

31.9 Design Examples 1154

31.9.1 Voltage Amplifiers 1154

31.9.2 A Transimpedance Amplifier 1158

Chapter 32 Hysteretic Power Converters 1175

32.1 A Review of Power and Energy Basics 1176

32.1.1 Energy Storage in Inductors and Capacitors 1177

32.1.2 Energy Use in Transmitting Data 1180

32.1.3 Selection and use of Switches 1181

32.2 Switching Power Supplies: Some Examples 1189

32.2.1 The Buck SPS 1189

32.2.2 The Boost SPS 1196

32.2.3 The Flyback SPS 1200

32.2.4 Pulse Width Modulation: A Control Loop Example 1204

32.3 Hysteretic Control 1210

32.3.1 Topologies 1211

32.3.2 Examples 1212

Index 1219

About the Author 1235




상품결제정보

고액결제의 경우 안전을 위해 카드사에서 확인전화를 드릴 수도 있습니다. 확인과정에서 도난 카드의 사용이나 타인 명의의 주문등 정상적인 주문이 아니라고 판단될 경우 임의로 주문을 보류 또는 취소할 수 있습니다.  

무통장 입금은 상품 구매 대금은 PC뱅킹, 인터넷뱅킹, 텔레뱅킹 혹은 가까운 은행에서 직접 입금하시면 됩니다.  
주문시 입력한 입금자명과 실제입금자의 성명이 반드시 일치하여야 하며, 7일 이내로 입금을 하셔야 하며 입금되지 않은 주문은 자동취소 됩니다.

배송정보

  • 배송 방법 : 택배
  • 배송 지역 : 전국지역
  • 배송 비용 : 무료
  • 배송 기간 : 3일 ~ 7일
  • 배송 안내 : - 산간벽지나 도서지방은 별도의 추가금액을 지불하셔야 하는 경우가 있습니다.
    고객님께서 주문하신 상품은 입금 확인후 배송해 드립니다. 다만, 상품종류에 따라서 상품의 배송이 다소 지연될 수 있습니다.

교환 및 반품정보

교환 및 반품이 가능한 경우
- 상품을 공급 받으신 날로부터 7일이내 단, 가전제품의
  경우 포장을 개봉하였거나 포장이 훼손되어 상품가치가 상실된 경우에는 교환/반품이 불가능합니다.
- 공급받으신 상품 및 용역의 내용이 표시.광고 내용과
  다르거나 다르게 이행된 경우에는 공급받은 날로부터 3월이내, 그사실을 알게 된 날로부터 30일이내

교환 및 반품이 불가능한 경우
- 고객님의 책임 있는 사유로 상품등이 멸실 또는 훼손된 경우. 단, 상품의 내용을 확인하기 위하여
  포장 등을 훼손한 경우는 제외
- 포장을 개봉하였거나 포장이 훼손되어 상품가치가 상실된 경우
  (예 : 가전제품, 식품, 음반 등, 단 액정화면이 부착된 노트북, LCD모니터, 디지털 카메라 등의 불량화소에
  따른 반품/교환은 제조사 기준에 따릅니다.)
- 고객님의 사용 또는 일부 소비에 의하여 상품의 가치가 현저히 감소한 경우 단, 화장품등의 경우 시용제품을
  제공한 경우에 한 합니다.
- 시간의 경과에 의하여 재판매가 곤란할 정도로 상품등의 가치가 현저히 감소한 경우
- 복제가 가능한 상품등의 포장을 훼손한 경우
  (자세한 내용은 고객만족센터 1:1 E-MAIL상담을 이용해 주시기 바랍니다.)

※ 고객님의 마음이 바뀌어 교환, 반품을 하실 경우 상품반송 비용은 고객님께서 부담하셔야 합니다.
  (색상 교환, 사이즈 교환 등 포함)

상품사용후기

상품의 사용후기를 적어주세요.

게시물이 없습니다

상품문의하기 모두 보기

상품 Q&A

상품에 대해 궁금한 점을 해결해 드립니다.

게시물이 없습니다

상품문의하기 모두 보기